The ICE Forward Conference

ICEF 2024

geometries.

ASME

DFLTC has been demonstrated to defeat the soot-NOx trade-off in diesel engines with little compromise in thermal efficiency [2]. A distinct feature of DFLTC as in Fig. 1 is

the presence of low temperature heat release validated CFD model is used to test the hypothesis that at early injection timings the injected diesel fuel has sufficient time to disperse into the natural gas – air mixture. distributed in localized results autoignition, which further consumes the natural gas – air mixture as combustion proceeds and leads to low engine-out oxides of nitrogen emissions. Additionally, the overall lean combustion results in near-zero soot emissions.

Engine Specifications			
Table 1: Single cylinder research engine specifications [2]			
Parameter		Value	
Bore		123 mm	
Stroke		152 mm	
Connecting rod		243 mm	
Compression ratio		18.5:1	
Combustion chamber geometry		Mexican hat	
Diesel injection system		Delphi DFP5	
Injector nozzle hole diameter		0.1905 mm	
Number of nozzle holes		7	
Maximum engine speed		2200 rpm	
Table 2: Dual	fuel specificati	ons.	
Fuel	Model Fuel	Auto Ignition	Intake Metho
Diesel	Dodecane	High	High pressure liqui
Natural Gas	Methane	Low	Fumigated premixed

Modeling Dual Fuel Combustion in a Heavy-Duty Diesel Engine Fueled with Diesel and Natural Gas

Joe Semler*, Abhinandhan Narayanan, Hariraja Thothadri, Kalyan Srinivasan, Sundar Krishnan Department of Mechanical Engineering, *Randall Research Scholars Program

College of Engineering